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We study the general properties of stochastic two-species models for predator-prey
competition and coexistence with Lotka–Volterra type interactions defined on a d-
dimensional lattice. Introducing spatial degrees of freedom and allowing for stochastic
fluctuations generically invalidates the classical, deterministic mean-field picture. Al-
ready within mean-field theory, however, spatial constraints, modeling locally limited
resources, lead to the emergence of a continuous active-to-absorbing state phase transi-
tion. Field-theoretic arguments, supported by Monte Carlo simulation results, indicate
that this transition, which represents an extinction threshold for the predator popula-
tion, is governed by the directed percolation universality class. In the active state, where
predators and prey coexist, the classical center singularities with associated population
cycles are replaced by either nodes or foci. In the vicinity of the stable nodes, the
system is characterized by essentially stationary localized clusters of predators in a
sea of prey. Near the stable foci, however, the stochastic lattice Lotka–Volterra system
displays complex, correlated spatio-temporal patterns of competing activity fronts. Cor-
respondingly, the population densities in our numerical simulations turn out to oscillate
irregularly in time, with amplitudes that tend to zero in the thermodynamic limit. Yet
in finite systems these oscillatory fluctuations are quite persistent, and their features
are determined by the intrinsic interaction rates rather than the initial conditions. We
emphasize the robustness of this scenario with respect to various model perturbations.
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1. INTRODUCTION

Since Lotka and Volterra’s seminal and pioneering works, (1,2) many decades ago,
modeling of interacting, competing species has received considerable attention
in the fields of biology, ecology, mathematics,(4−15) and, more recently, in the
physics literature as well.(16−27)In their remarkably simple deterministic model,
Lotka and Volterra considered two coupled nonlinear differential equations that
mimic the temporal evolution of a two-species system of competing predator and
prey populations. They demonstrated that coexistence of both species was not only
possible but inevitable in their model. Moreover, similar to observations in real
populations, both predator and prey densities in this deterministic system display
regular oscillations in time, with both the amplitude and the period determined
by the prescribed initial conditions (only near the center fixed point associated
with the coexistence of the two populations is the oscillation frequency solely
given in terms of the intrinsic interaction rates, see Sec. 2.1 below). However,
despite the undisputed mathematical elegance of these results, and its conse-
quent ubiquity in textbooks,(3−7)the original Lotka–Volterra model (LVM) is often
severely criticized on the grounds of being biologically too simplistic and therefore
unrealistic, (5) and mathematically unstable with respect to model modifications. (7)

In this paper, we aim at drawing a comprehensive, detailed picture of the
stochastic dynamics, defined on a d-dimensional lattice, of two competing popula-
tions with Lotka–Volterra type predation interaction. The systems under consider-
ation are ‘individual-based’ lattice models, where each lattice site can be occupied
by a given (finite) number of particles. We shall formulate the stochastic lattice
Lotka–Volterra model (SLLVM) in the natural language of a reaction–diffusion
lattice gas model, i.e., in terms of appropriate stochastic particle hopping and
creation and annihilation processes defined on a lattice, and will here investigate
them by means of various methods of the theory of nonequilibrium statistical
mechanics, including mean-field approximations, Monte Carlo computer simula-
tions, field-theoretic representations and renormalization group arguments. With
these techniques, we are thus able to consider and discuss the role of spatial
constraints, spatio-temporal fluctuations and correlations, and finite-size effects.
We shall argue that although the criticisms against the classical LVM definitely
pertain to the original deterministic rate equations, introducing spatial degrees
of freedom and allowing for stochasticity (13) actually renders the corresponding
two-species reaction system considerably richer, definitely more interesting, and
perhaps even more realistic. In addition, in stark contrast with the deterministic
LVM, the SLLVM scenario turns out to be remarkably robust with respect to model
modifications, and thus appears to provide a quite generic picture of two-species
predator-prey interactions.

In recent years, population dynamics has received considerable attention
from the statistical physics community. In particular, a variety of so-called
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‘individual-based,’ or stochastic, lattice predator-prey models have been inves-
tigated, e.g., in Refs. 16–22, employing largely mean-field-type approaches (in-
cluding refined versions, such as the pair approximation of Refs. 16 and 22)
and Monte Carlo simulations, mostly in two dimensions. Among the main issues
addressed by these papers are the phase diagrams of these stochastic lattice Lotka–
Volterra systems (see, e.g., Refs. 16–18, 22, and 25–27), the critical properties near
the predator extinction threshold, typically argued to be governed by the scaling
exponents of the directed percolation (DP) universality class,(16−18,25,26)and the
presence or absence of (stochastic) oscillations, whose amplitudes were reported
in Refs. 17, 18, and 21 to (globally) decrease as the system size was increased.

Since it would be impossible (and well beyond our scope here) to provide
a complete survey of the numerous contributions of statistical physicists to the
fascinating field of population dynamics, we choose, for the sake of clarity, to
briefly discuss more specifically some work on lattice predator–prey models that
we have found to be particularly relevant for the issues considered in this article.
In Refs. 17 and 18, the authors considered various two-species four-state models
(in the absence of diffusion, each lattice site is either empty, occupied by a single
predator or prey, or by both a predator and prey) and noticed that both extinction
and coexistence of the two populations are possible. They found that there ex-
ists a sharp continuous transition between the predator extinction phase and the
active predator–prey coexistence phase. Numerical studies of the (static) critical
properties near the predator extinction threshold (mainly in one and two dimen-
sions) revealed that its critical exponents are consistent with those of DP(28,29)

(see below). In addition, in Refs. 17 and 18 the oscillatory behavior displayed by
the densities of the coexisting populations in some region of the active parameter
space was studied as well. It was reported that in one and two dimensions the
population densities showed characteristic erratic oscillations whose amplitude
vanishes in the thermodynamic limit (even in the presence of long-range interac-
tions), while it was argued that the oscillation amplitude may remain finite in three
dimensions. (17) The authors of Ref. 21 considered a non-diffusive three-state
model (each site can be empty, or occupied either by a predator or a prey) in-
teracting according to a cyclic scheme. This system can in fact be mapped onto
the so-called ‘rock-scissors-paper’ (or three-state cyclic Lotka–Volterra) model,
(11,23) well-known in the field of game theory. (11) The (mean-field) rate equations
associated with that model actually admit a constant of motion(21,11) which in
turn implies cycles in the phase portrait, describing regular oscillations of the
densities of predators and prey. However, numerical simulations of the stochastic
version of that model on two-dimensional lattices led to a completely different
behavior: The system was shown to display erratic oscillations whose amplitude
vanished on a global scale for large lattices, but which were reported to persist
on a smaller scale. These were explained in Ref. 21 as being associated with
‘small oscillators’ (actually fluctuations) that are out of phase. Also, the fractal
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dimension of the patterns developed on the square lattice as result of the spatial
fluctuations of the reactants was investigated. (21) We also would like to mention
that Boccara et al. (25) studied a two-dimensional automaton network predator-prey
model (a three-state system) with parallel updating for all the reactions except for
‘smart motion’ (updated sequentially) of the predators (prey) which propagate
toward the direction of highest (lowest) prey (predator) density. The authors of
Ref. 25 studied the phase portrait, finding a stable coexistence state which may
exhibit noisy cyclic behavior associated with complex patterns, and computing
critical exponents, which in some regime are in reasonable agreement with the DP
values. Later, other authors (26) considered the two-dimensional lattice-gas (with
sequential updating) version of the model introduced by Boccara et al. and stud-
ied numerically its phase diagram and critical properties, finding again results
consistent with the DP universality class. In addition, for the two-dimensional
model of Refs. 26, Rozenfeld and Albano argued that, in good agreement with
mean-field results, there exists a region of the phase diagram where the densities
of species “exhibit self-sustained oscillations,” with amplitudes that remain finite
in the thermodynamic limit. As such a result was somewhat surprising, but could
stem from the long-range interaction between predators and prey displayed in
the model of Refs. 26, Lipowski, willing also to test the general validity of the
scenario outlined in Refs. 26, checked that the range of interaction did not affect
the characteristics of the oscillatory behavior displayed in two dimensions by the
model of Ref. 17: Actually, the amplitude of the oscillations was always found to
vanish in the thermodynamic limit.

Before specifying further on two-species (stochastic) predator–prey models,
for the sake of completeness we give a brief overview of some properties of the
multi-species Lotka–Volterra rate equations. In general, for n particle or population
species the latter read (with i = 1, . . . , n) (3,9,11):

dxi (t)

dt
= xi (t)

(
ri +

n∑
j=1

αi, j x j (t)

)
, (1)

where xi denotes the species i , the ri are the intrinsic growth (ri > 0) or decay (ri <

0) rates, and αi, j represents the interaction matrix that encodes the competition
‘reaction’ between species i and j . For general αi, j and an arbitrary number n > 2
of species, many questions remain wide open. One of the most intriguing (and less
understood) features is the fact that the deterministic equations (1) may generate
chaotic behavior already for only three species (n = 3). (3,11) In the case where
αi, j = −α j,i , and thus αi,i = 0 (which means that there is no nonlinear interaction
within the same species), it has been shown that Eq. (1) allows for a constant
of motion (conserved first integral). (9) Nonetheless, also in this situation, for an
even number of species with n ≥ 4 it was demonstrated that Eq. (1) can display
chaotic behavior resembling Hamiltonian chaos. (10) We also mention that when
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three or more species are in cyclic competition according to a dynamics described
by Eqs. (1), i.e., the rate equations are invariant under cyclic permutations of the
species, quite intriguing behavior may emerge: For some time it looks as if one
species were bound to become the unique ‘survivor’; then its density drops and
it is replaced with another apparently dominant species, and after some time a
third species seems to become dominant, and so on cyclically, involving all n
species. (12,11)

In the case of a food chain with n components, where there is interac-
tion (competition) among agents of the same species and where the first species
serves as the prey for the second, which is the prey of the third and so on, the
only nonzero entries of the interaction matrix of Eq. (1) are αi,i < 0, αi,i+1 < 0,
αi,i−1 > 0 (α1,0 = 0), and also r1 > 0, ri < 0 for i > 1. In this case, it is
known(11) that the situation with n = 2 is generic and already captures the features
of the multi-species system. In Sec. 2.3 we shall discuss in detail the properties
of a system [Eqs. (6,7)] which can be recast into the above two-species case.
Little is known as yet about spatial multi-species Lotka–Volterra systems defined
on lattices, where spatial fluctuations generally invalidate (at least in low dimen-
sions) the predictions from the mean-field rate equations (1). We note, however,
that adding multiplicative noise as appropriate for the existence of inactive, ab-
sorbing states transforms Eqs. (1) to the Langevin equations for multi-species
directed percolation processes, whose critical properties were shown by Janssen
to be generically described by the DP universality class. (30) A remarkable ex-
ception is the stochastic cyclic Lotka–Volterra model, (23) mimicking a simple
cyclic food chain of length n, where the species Ai (i = 1, . . . , n) react accord-
ing to the scheme A1 + A2 → 2A1, A2 + A3 → 2A2, . . . , An−1 + An → 2An−1,
An + A1 → 2An . For this system, Frachebourg and Krapivsky(23) showed analyt-
ically (within a so-called Kirkwood decoupling scheme), and confirmed numeri-
cally, that in any dimension there is a critical number of species nc above which
the system reaches a frozen steady state, i.e., there is fixation, (23) characterized
by inert, non-fluctuating domains at whose interfaces all dynamics ceases (for ex-
ample, in one dimension, A1 . . . A1 A3 . . . A3 A5 . . . A5 A2 . . . A2 A4 . . . A4). In one
dimension, the minimal number of species in order to have fixation is five; for
n < 5 the systems coarsens: a large domain of a single species eventually spans the
whole lattice. In two and three dimensions it was found that nc = 14 and nc = 23,
respectively; for n < nc, the steady state is reactive in d = 2, 3.

All the above models are non-diffusive in the sense that there is no ex-
plicit mechanism allowing the mixing of the system: the agents are considered
as immobile (but species may still spread because of the particle production pro-
cesses, since new offspring have to be put to adjacent sites). Clearly, as noted by
other authors,(17,21,25−27)more realistic description of the predator–prey interaction
should include the possibility for the agents to move. In fact, in ecosystems a prey
tend to avoid the interaction with an incoming predator, while the predators aim
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to pursue the prey. In the absence of mixing processes, one can expect that the
stochastic lattice predator–prey model should display features like fixation (which
is interesting but does not seem realistic from an ecological perspective). One
approach, followed here, is to allow the system to be mixed via particle (predators
and prey) diffusion. Another approach, considered elsewhere for a model with
next-nearest-neighbor interaction, (31) is to consider a nearest-neighbor exchange
process (among any agents: predators, prey and empty sites) referred to as ‘stir-
ring.’ Interestingly, completely different results are obtained for systems mixed
through diffusion or stirring, respectively: While in Sec. 3.3 we shall explain that
diffusion does not affect the critical and other generic properties of the system
under consideration here, the exchange process is in fact capable of completely
washing out the subtle correlations induced by long-range interactions. We discuss
this latter issue in detail elsewhere. (31)

After this general discussion, let us anticipate the main results of this present
work (of which a partial and brief account has recently been outlined in Ref. 31):

• We provide a comparison of various mean-field predictions with the results
of numerical Monte Carlo simulations in dimensions 1 ≤ d ≤ 4, address-
ing the phase diagram, the structure of the phase portrait, the existence
and properties of the predator extinction phase transition, and other issues
(Secs. 2.3 and 3.3).

• We analytically derive some exact properties of the SLLVM (Sec. 3.2),
quantitatively study the phase portrait and characterize the properties of
the intriguing spatial structures in the oscillatory regime of the active
coexistence state by numerically computing several correlation functions
(Sec. 3.3).

• We study the emergence of transient stochastic oscillations in the SLLVM
and discuss the functional dependence of their characteristic frequency as
well as the dependence of their amplitude on the system size (Sec. 3.3).

• We provide a renormalization group argument, based on a field theory
representation of the corresponding master equation, that establishes that
the active to absorbing extinction transition is indeed governed by the
directed percolation (DP) universality class (Sec. 3.4).

Our results thus both confirm and supplement earlier work, where, as dis-
cussed above, some of these issues have already been considered for related, but
significantly different, systems such as the four-state models of Refs. 17 and 18,
or the cyclic three-state model of Ref. 21. In particular, we shall show that the
mean-field rate equations [Eqs. (6,7)] for the model under consideration here al-
ready provide a qualitatively (albeit not quantitatively) correct description of the
behavior of the corresponding stochastic lattice system, of which they therefore
capture the essential features (in dimensions d > 1).
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The organization of this article is the following: Sec. 2 is devoted to a
review of the properties of the deterministic two-species LVM. Sec. 2.1 covers the
basic properties of the original Lotka–Volterra coupled rate equations (see Ref. 7,
Vol. I, Chap. 3). The fundamental features of the corresponding zero-dimensional
stochastic model are reviewed in Sec. 2.2. (4,19) In Sec. 2.3 and 2.4, we consider the
LVM rate equations subject to finite carrying capacities, and its spatial extension
with diffusive particle propagation(20) (see also Ref. 7, Vol. II, Chap. 1). Sec. 3
is devoted to the two-species stochastic lattice Lotka–Volterra model (SLLVM),
as introduced in Sec. 3.1. Some exact properties of the SLLVM are discussed in
Sec. 3.2. Sec. 3.3 is devoted to the results from our Monte Carlo simulations of the
SLLVM: Dynamical features in the active phase as well as the critical properties
near the predator extinction threshold are presented and discussed in detail here.
In Sec. 3.4, we present a field-theoretic analysis of the critical properties of the
SLLVM. Sec. 4 is devoted to our conclusions.

2. PRELIMINARIES: GENERIC PROPERTIES OF THE

LOTKA–VOLTERRA MODEL (LVM) AND MEAN-FIELD THEORY

2.1. The Two-Species Lotka–Volterra Rate Equations

Following Lotka and Volterra’s original work, (1,2) we consider two chemical
or biological species, the ‘predators’ A and ‘prey’ B, in competition: the predators
consume the prey and simultaneously reproduce with rate λ > 0. In addition, the
prey may reproduce with rate σ and the predators are assumed to spontaneously
die with rate µ. Neglecting any spatial variations of the concentrations, which we
shall denote by a(x, t) and b(x, t) for species A and B, respectively, the heuristic
mean-field rate equations for this reaction model are given by the classical coupled
nonlinear Lotka–Volterra (LV) differential equations (1,2):

ȧ(t) = λ a(t) b(t) − µ a(t), (2)

ḃ(t) = σ b(t) − λ a(t) b(t), (3)

where the dot denotes the time derivative. Note that within this mean-field approx-
imation, we may view the parameters −µ = σA − µA and σ = σB − µB as the
net population growth rates for competing birth/death processes (A → A + A and
A → �, where � denotes an empty ‘spot’) with rates σA and µA, respectively,
and similarly for species B. For µ > 0 and σ < 0, clearly both populations will
die out exponentially, whereas µ < 0 and σ > 0 leads to unbounded population
growth. Therefore, interesting feedback interactions between the ‘prey’ B and the
‘predators’ A, which would become extinct in the absence of the prey, occur only
if both µ and σ (as well as λ) are positive.

The coupled deterministic evolution equations (2), (3) have as station-
ary states (fixed points) (a∗, b∗) = (0, 0) (extinction), (0,∞) (predators extinct,
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Malthusian prey proliferation), and (ac, bc) = (σ/λ,µ/λ) (species coexistence).
For positive µ and σ , the ‘trivial’ steady states with a = 0 and b = 0 and ∞ are
both linearly unstable [in the absence of predation, λ = 0, (0,∞) is stable].

Notice, however, that they both constitute absorbing stationary states,
since neither can be left through the involved reactions alone. Linearizing
about the nontrivial coexistence stationary state, δa(t) = a(t) − ac, δb(t) =
b(t) − bc, one obtains to first order in δA and δB: δȧ(t) = σ δb(t), and
δḃ(t) = −µδa(t). The eigenvalues of the corresponding Jacobian (also oc-
casionally termed stability or community matrix) are ±i

√
µσ , which sug-

gests purely oscillatory kinetics in the vicinity of the neutrally stable
fixed point (center singularity) (ac, bc). Indeed, one finds the general peri-
odic solutions δa(t) = δa(0) cos(

√
µσ t) + δb(0)

√
σ/µ sin(

√
µσ t), and δb(t) =

−δa(0)
√

µ/σ sin(
√

µσ t) + δb(0) cos(
√

µσ t), with characteristic frequency
ω = √

µσ .
Going beyond linear stability analysis, one easily confirms that the quantity

K (t) = λ[a(t) + b(t)] − σ ln a(t) − µ ln b(t) (4)

represents a conserved first integral for any phase space trajectory, K̇ (t) = 0. Quite
generally, therefore, Eqs. (2), (3) yield periodic oscillations of both species concen-
trations, whose amplitudes (and in the nonlinear regime, also whose frequencies)
are determined by the initial conditions a(0) and b(0), and according to Eq. (4)
neither a(t) nor b(t) can ever vanish. The emergence of purely oscillatory kinetics
in this classical Lotka–Volterra model, irrespective of the involved reaction rates,
and in character only determined by the initial conditions, is clearly not a realistic
feature. (5,7)

2.2. The Zero-Dimensional Stochastic Lotka–Volterra Model

Instead of the regular cycles, completely determined by the initial conditions,
predicted by the rate equations (2), (3), one would more realistically typically
expect stable stationary states with fixed concentrations, and/or the possibility
of extinction thresholds. Indeed, the conservation law for K (t) and the related
property that the eigenvalues of the linearized kinetics near coexistence are purely
imaginary, constitute very special features of the deterministic model equations
— there is in fact no underlying physical background for the conserved quantity
(4). Correspondingly, the above center singularity is unstable with respect to
perturbations: namely, either with respect to introducing modifications of the
model equations, spatial degrees of freedom, and/or stochasticity. For obviously,
when the number of predators becomes very low, a chance fluctuation may lead
the system into the absorbing state with a = 0. Consider the zero-dimensional
stochastic Lotka–Volterra model that is governed by the following master equation,
stating the gain and loss balance for the temporal evolution of the probability of
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finding A predators and B prey in the system,

Ṗ(A, B; t) = λ(A − 1) (B + 1) P(A − 1, B + 1; t)

+µ (A + 1) P(A + 1, B; t) + σ (B − 1) P(A, B − 1; t)

− (µ A + σ B + λ A B) P(A, B; t). (5)

In this description, the system has discrete degrees of freedom, and it can be
verified that its only stable stationary state (Ṗ = 0) is Ps(A = 0, B = 0) = 1
and Ps(A �= 0, B �= 0) = 0. (4) Therefore, asymptotically as t → ∞ the empty
state will be reached, which is absorbing, since all processes cease there, and
no fluctuation can drive the system out of it anymore. However, at finite times
such stochastic Lotka–Volterra systems still display quite intriguing dynamics:
namely, inevitable fluctuations tend to push the system away from the trivial
steady state and induce erratic population oscillations that almost resemble the
deterministic cycles. This ‘resonant amplification mechanism’ is always present
in finite populations and can significantly delay extinction. (19) We shall later, in
Sec. 3.3, discuss the analog of this mechanism in the spatially extended models.

2.3. Mean-Field Rate Equations With Finite Carrying Capacities

In the ecological and biological literature, at the rate equation level, population
models such as (2), (3) are rendered more ‘realistic’ by introducing growth-limiting
terms that describe a finite ‘carrying capacity.’ (5,7) In a similar manner, in a spatial
system one may need to take into account that the local population densities cannot
exceed some given, bound value, which typically depends on external factors; this
amounts to introducing spatial constraints, e.g., in a lattice model, restrictions
on the maximum possible occupation number on each site. There are various
possibilities to introduce carrying capacities; here we consider the very natural
choice of limiting the effective reproduction term in Eq. (3) for the prey, in the form
σ b(t)

[
1 − ζ−1 a(t) − ρ−1 b(t)

]
, where 0 ≤ ζ−1 ≤ ρ−1 ≤ 1. In the absence of the

predators, ρ represents the prey carrying capacity. In the presence of predators, it
is further diminished by the cross-species interactions. In the lattice model, these
choices reflect the fact that prey reproduce only when an ‘empty spot’ is available
in its immediate vicinity. The resulting rate equations now read (with 0 < ρ ≤ ζ ):

ȧ(t) = a(t) [λ b(t) − µ] , (6)

ḃ(t) = σb(t)
[
1 − ζ−1 a(t) − ρ−1 b(t)

] − λa(t) b(t). (7)

As shown in Sec. 3.2, when ζ = ρ = 1, Eqs. (6) and (7) can be interpreted as the
mean-field versions of the exact microscopic equations derived from a stochastic
lattice formulation (based on the corresponding master equation) where each
lattice site may at most be occupied by a single particle. Obviously, in this case
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0 ≤ a(t) + b(t) ≤ 1 (provided that this inequality holds initially at time t = 0).
[Indeed, even when Eq. (7) cannot be related to some microscopic dynamics, it
is readily verified that still 0 ≤ ζ−1 a(t) + ρ−1 b(t) ≤ 1, provided one starts with
a ‘physical’ initial condition, i.e., 0 ≤ ζ−1 a(0) + ρ−1 b(0) ≤ 1 and, in addition,
0 < ρ ≤ ζ holds.]

The coupled rate equations (6) and (7) have three fixed points. The two
obvious ones are (a∗

1 , b∗
1) = (0, 0) (total population extinction) and (a∗

2 , b∗
2) =

(0, ρ), corresponding to a system filled with prey up to its carrying capacity. The
only nontrivial fixed point, associated with the coexistence of both populations, is
(a∗

3 , b∗
3), with

a∗
3 = ζ σ

ζ λ + σ

(
1 − µ

λ ρ

)
, b∗

3 = µ

λ
. (8)

Species coexistence is obviously possible only when λ > µ/ρ. For fixed predator
death rate µ and prey carrying capacity ρ, the predator population dies out if
λ ≤ λc = µ/ρ, which represents the predator extinction threshold. For λ → λc

from above, the stationary predator density tends to zero continuously; hence
predator extinction constitutes a continuous nonequilibrium phase transition from
the active coexistence phase to an inactive, absorbing state: once all predators
are gone, no mechanism, not even stochastic fluctuations, allows them to ever
reappear in the system.

Before proceeding with the linear stability analysis of Eqs. (6) and (7), we
remark that there exists a Lyapunov function V (a, b) (11,7) associated with those
equations. In fact, with

V (a, b) = λ
[
b∗

3 ln b(t) − b(t)
]

+ (λ + σ/ζ )
[
a∗

3 ln a(t) − a(t)
]
, (9)

we have V̇ (a, b) = λσ
ρ

[b∗
3 − b(t)]2 ≥ 0 and V̇ (a∗

3 , b∗
3) = 0. According to

Lyapunov’s theorem, every flow (a(t), b(t)) is contained in {(a, b)|V̇ (a, b) =
0}. Therefore, since V (a, b) > 0 ∀(a, b) �= (a∗

3 , b∗
3) and the neighborhood

of (a∗
3 , b∗

3) represents an invariant subset (the so-called ω-limit property in
Chap. 2 of Ref. 11), it follows that (a∗

3 , b∗
3) is indeed globally stable (when phys-

ically accessible, i.e., for λ > µ/ρ). Only when ρ = ∞, as is the case in the
classical LV equations, V (a, b) = 0, and in this situation (a∗

3 , b∗
3) → ( ζ σ

ζ λ+σ
,

µ

λ
) is

not globally stable.
There is general no methods to find a Lyapunov function (provided it even

exists) associated with a given set of coupled ordinary differential equations. One
thus often relies on generic mathematical results, such as Kolmogorov’s theorem
(see Refs. 3 and 8 and references therein) and the so-called Bendixson–Dulac test
(Refs. 11 and 32) to establish the existence of a stable fixed point or limit cycle. As
explained in Appendix A, Kolmogorov’s theorem does not apply to Eqs. (6), (7),
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while the Bendixson–Dulac test yields that these equations do not admit periodic
orbits (as long as there is a finite carrying capacity, i.e. ρ < ∞).

We now proceed with an analysis of the properties of the various fixed points
of the rate equations (6) and (7) by means of linear stability analysis. (7) To this
end, we need to diagonalize the Jacobian matrix (i = 1, 2, 3)

J =
⎛
⎝ λ b∗

i − µ λ a∗
i

−
(

σ
ζ

+ λ
)

b∗
i σ

(
1 − 2b∗

i

ρ

)
−

(
σ
ζ

+ λ
)

a∗
i

⎞
⎠ . (10)

This gives the eigenvalues associated with the fixed point (0, 0) to be ε+ = σ

and ε− = −µ, which implies that the empty lattice fixed point is a saddle point
(unstable in the b direction), for any value of ζ and ρ. For the fixed point (0, ρ)
(system filled with prey), the eigenvalues read ε+ = ρ λ − µ and ε− = −σ . This
means that (0, ρ) is a stable node provided λ < λc = µ/ρ. When λ > λc, where the
nontrivial fixed point (8) yields a positive predator density, ε+ becomes positive,
and (0, ρ) turns into a saddle point (unstable in the a direction). This result also
confirms that in the absence of any local density restriction on the prey, i.e., in the
limit ρ → ∞, the fixed point (0, ρ) → (0,∞) becomes unstable for any λ > 0.

For the nontrivial fixed point given by Eq. (8), the corresponding eigenvalues
are

ε± = − σ µ

2λ ρ

[
1 ±

√
1 − 4λ ρ

σ

(
λ ρ

µ
− 1

)]
, (11)

and the different emerging scenarios can be summarized as follows:

• for λ ∈]λc, λs] or σ > σs , where λc = µ/ρ and λs = µ

2ρ
(1 +

√
1 + σ

µ
) and

σs = 4λ ρ( λ ρ

µ
− 1) > 0, the eigenvalues are real with ε± < 0: the fixed

point is a stable node;
• for λ ∈]λs,∞[ or σ < σs , the eigenvalues ε± have both real and imagi-

nary parts; in this case �(ε±) < 0 and |�(ε±)| �= 0, provided that ρ < ∞
(µσ/ρ λ > 0): the nontrivial fixed point (8) is an attractive focus;

• if ρ → ∞ and/or if µσ/ρ λ → 0 (with finite µ and σ ), the real part of the
eigenvalues vanishes, whence ε± → ±i

√
µσ . In this extreme situation

the nontrivial fixed point at ρ = ∞ becomes a center singularity, and we
encounter periodic cycles in the phase portrait. In the case when ρ is finite
and µσ/ρ λ → 0, the fixed point evolves towards one of the phase space
boundaries, and no cyclic behavior can be established.

It is worthwhile noticing that these scenarios quantitatively differ from those
predicted by the rate equations in the models of Refs. 17 and 21 and turn out to
be essentially independent of the actual value of ζ , which is the parameter that
controls the spatial restrictions of the predators on the prey population.
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As a result of this discussion, on the rate equation level, it turns out that
the growth-limiting constraints (as long as ρ−1 > 0) generically invalidate the
classical Lotka–Volterra picture. Interestingly, the density restrictions induce a
continuous active to absorbing phase transition, namely an extinction threshold
for the predator population at λc = µ/ρ, which can be accessed by varying the
reaction rates. At mean-field level (then confirmed by numerical simulations of
the related stochastic models), extinction phase transitions were also reported in
Refs. 16, 18, and 26. In the vicinity of the phase transition at λc (with σ and
µ held fixed), the density of predators approaches its stationary value linearly
according to Eqs. (6), (7): a∗

3 ∼ (λ − λc)βMF , with βMF = 1. Moreover, depending
on these rates, the only stable fixed point, corresponding to the coexistence of
both populations of predators and prey, is either a node or a focus, and therefore
approached either directly or in an oscillatory manner. Near the predator extinction
threshold, the active fixed point is a node; deeper in the population coexistence
phase, it changes its character to a focus. In Sec. 3.3, we shall test the validity
of the results arising from the deterministic mean-field rate equations (6) and
(7) by considering stochastic lattice predator–prey models defined on lattices and
formulated in a microscopic setting (i.e., starting from stochastic dynamical rules)
taking into account internal noise (fluctuations).

2.4. The Deterministic Reaction–Diffusion Equations

(with Finite Carrying Capacities)

To account for the spatial structure on a rate equation level, and guaranteeing
asymptotic stability of the coexistence state with both nonvanishing predator and
prey populations, one may introduce spatial degrees of freedom. This effectively
allows the prey to ‘escape’ via diffusion, which in turn requires the predators to
‘pursue’ them, thus effectively generating delay terms in the kinetics that stabilize
the nontrivial steady state. (7) As previously, this can be done in a heuristic fashion
with finite carrying capacity ρ and additional growth-limiting term ζ for the prey,
and adding diffusive terms ∇2a(x, t) and ∇2b(x, t) to Eqs. (6) and (7), with
diffusivities DA and DB :

∂a(x, t)

∂t
= DA ∇2a(x, t) + λ a(x, t) b(x, t) − µ a(x, t),

∂b(x, t)

∂t
= DB ∇2b(x, t) − λ a(x, t) b(x, t) (12)

+ σ b(x, t)
[
1 − ζ−1 a(x, t) − ρ−1 b(x, t)

]
.

For instance, it is straightforward to construct one-dimensional wavefront solu-
tions to the deterministic coupled reaction–diffusion equations (12) of the form
a(x, t) = a(x + ct) and b(x, t) = b(x + ct), which interpolate between the sta-
tionary states (0, ρ) and (a∗

3 , b∗
3). In fact, depending on the rate parameters, there
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exist two types of such travelling waves of ‘pursuit and evasion,’ namely either
with monotonic or oscillatory approach to the stable state (20); these correspond to
the different scenarios discussed in the previous Sec. 3.3. For DB = 0, one finds
a minimum wavefront propagation velocity c ≥ [4DA (λ ρ − µ)]1/2 (see Ref. 7,
Vol. II, Chap. 1.2.).

As we shall explain in Sec. 3.3 (see Fig. 2), such ‘pursuit and evasion’ waves
in the predator and prey density fields arise naturally in the SLLVM in a certain
region of parameter space, even in the absence of explicit diffusion of either
species. We also mention that the problem of velocity selection for reaction fronts
starting from a microscopic description, e.g., from the associated master equation,
for the underlying stochastic processes is a rather subtle issue. (33,34) For some two-
state models, a field-theoretic representation has been useful to derive a stochastic
differential equation that properly represents the underlying stochastic process.
(34) However, to the best of our knowledge no similar treatment has as yet been
devised for Lotka–Volterra type interactions.

3. THE STOCHASTIC LATTICE LOTKA–VOLTERRA MODEL (SLLVM)

In the remainder of this paper, we study and carefully discuss the role of
spatial structure and intrinsic stochastic noise on the physical properties of systems
with Lotka–Volterra type predator–prey interaction, starting from a microscopic
(stochastic) formulation. We shall compare the results of the SLLVM with those
predicted by the rate equations (6), (7) and will show that there is qualitative
agreement for many overall features (in dimensions d > 1), but there are also
important differences. We shall investigate the site-restricted stochastic version of
the lattice Lotka–Volterra model. Starting from the master equation governing its
stochastic kinetics, we shall employ numerical Monte Carlo simulations as well
as field-theoretic arguments.

3.1. The SLLVM (with Site Restrictions) as a Stochastic

Reaction–Diffusion Model

We define the SLLVM with site restrictions as a microscopic reaction–
diffusion system on a periodic hypercubic lattice of linear size L , whose sites
j are labeled by their components j = ( j1, . . . , jd ), where d denotes the spatial
dimension, and the unit vectors are represented by ei for i ∈ (1, . . . , d). Each
lattice site can either be empty (�), occupied by a ‘predator’ (A particle) or by
a ‘prey’ (B particle). Multiple occupancy is not allowed, and the stochastic rules
determining the system’s dynamics are defined as follows:

• A −→ �: death of a predator with rate µ;
µ
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• A� −→
D/z

�A and B� −→
D/z

�B: nearest-neighbor hopping (diffusion) with
rate D/z;

• B� −→
σ/z

B B: branching (offspring generation) of a prey with rate σ/z;
• AB −→

λ/z
AA: predation interaction: a predator consumes a prey and pro-

duces an offspring with rate λ/z.

In the above rules the quantity z = 2d represents the lattice coordination number;
all processes occur isotropically in space, i.e., there is no spatial bias in the reaction
rates. We also notice that the process with rate µ represents a single-site reaction,
whereas the processes with rates D, σ , and λ describe nearest-neighbor two-site
reactions.

Microscopically, each configuration C = C{A,B,�} of the system at time t is
characterized by a probabilistic weight P(C, t). The temporal evolution of this
probability distribution is governed by a master equation:

Ṗ(C, t) =
∑
C′ �=C

W (C ′ → C) P(C ′, t)

−
∑
C′ �=C

W (C → C ′) P(C, t), (13)

where the transition from the configuration C ′ to C (during an infinitesimal
time interval dt) occurs through a single reaction event with nonzero rate
W (C ′ → C). The first term on the right-hand-side of Eq. (13) is the ‘gain
term’ accounting for contributions entering the configuration C, while the sec-
ond (‘loss’) term captures the processes leaving C. Of course, the configura-
tions C and C ′, as well as the transition rates, should be compatible with the
processes underlying the dynamics. For instance, in one dimension, the con-
figuration C = {B, A, �, B, A, �, . . . , A, �, A, �, B} is compatible with
C ′ = {A, A, �, B, A, �, . . . , A, �, A, �, B}, and in this case the transition
C → C ′ occurs with a rate W (C → C ′) = λ/z. Specifically, to account for the site
restriction and the fact that we are dealing with a three-state model, the master
equation can be rewritten in a matrix form by introducing suitable 3 × 3 opera-
tors, which are the direct generalization of Pauli’s spin-1/2 operators (see, e.g.,
Ref. 35). Within this spin-like reformulation, which is by now standard in the study
of reaction–diffusion systems (see, e.g., Refs. 36 and 37 for reviews), the master
equation (13) can formally be rewritten as an ‘imaginary-time Schrödinger’ equa-
tion where the ‘stochastic Hamiltonian’ H , which is the Markovian generator, is in
general not Hermitian. Taking advantage of such a reformulation, the equations of
motion of all the observables, e.g., the density of particles, correlation functions,
etc. can be obtained in a systematic algebraic fashion using the corresponding
quantum physical Heisenberg picture (see, e.g., Ref. 36). In this language, the
equation of motion of the average value of an observable of interest, say O
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(density, correlator, . . . ), reads d
dt 〈O(t)〉 = ∑

C O(t) P(C, t) = 〈[H, Ô(t)]〉,
where the square bracket denotes the usual commutator and Ô is the operator
whose eigenvalue is O.

In addition to allowing us to derive exact properties of the phase portrait of
the SLLVM (see below), the stochastic Hamiltonian reformulation of the master
equation is the most suitable approach on which to build a field-theoretic analysis
of the critical properties of the system. Such a treatment is the scope of Sec. 3.4
below.

3.2. SLLVM Equations of Motion and Some Exact Properties

Let us now formulate the stochastic equation of motion for the density of the
A and B particles, denoted respectively as before a( j , t) = 〈n A

j (t)〉 and b( j , t) =
〈nB

j (t)〉. The stochastic variable n A
j (nB

j ) represents the occupation number at site j

by A (B) particles: n A
j = 1 (nB

j = 1) if the site j is occupied by a predator (prey),

and 0 otherwise. Obviously, it follows that 〈n�
j (t)〉 = 1 − 〈n A

j (t)〉 − 〈nB
j (t)〉. Con-

sidering a translationally invariant system, it is then straightforward to obtain the
following exact equations of motion for the concentrations of the predators and
the prey from the master equation (13):

ȧ(t) = λ cAB(t) − µ a(t), (14)

ḃ(t) = σ [b(t) − cB B(t) − cAB(t)] − λ cAB(t), (15)

where cAA(t)=〈n A
j n A

j+ei
〉(t),cB B(t)= 〈nB

j nB
j+ei

〉(t), and cAB(t) = 〈n A
j nB

j+ei
〉 (t) =

〈nB
j n A

j+ei
〉(t) represent the two-point correlation functions. Notice that the diffu-

sion rate D and the coordination number z do not appear explicitly in Eqs. (14)
and (15). However, they would enter the equations of motion for the two-site prob-
ability distributions, i.e., the correlators cAB(t) and cB B(t). It is clear from these
equations of motion that the quantity K in Eq. (4) is no longer a first integral of
the motion of the stochastic model (with the site restrictions, this is even true on
the mean-field level, as we saw in Sec. 2.3). Even though it is not possible to solve
Eqs. (14) and (15) in a closed form, owing to the emerging infinite hierarchy of
higher-order correlations, we can still obtain some useful and nontrivial informa-
tion on the phase portrait. Let us denote by a∗ and b∗ the stationary concentrations
of the predators and the prey, respectively, and by c∗

B B and c∗
AB the stationary values

of the correlators from Eqs. (14) and (15). As the site occupation number restric-
tions imply 0 ≤ a(t), b(t), cB B(t), cAB(t) ≤ 1, we thus have 0 ≤ µa∗ = λc∗

AB and
0 ≤ b∗ − σ+λ

σ λ
µ a∗ = c∗

B B ≤ 1. Thus, as a direct consequence of our reformula-
tion of the problem, we arrive at the following inequalities, which considerably
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restrict the physically available phase portrait:

0 ≤ a∗ ≤ min

(
λ

µ
, 1

)
; 0 ≤ b(t) ≤ 1,

0 ≤ a(t) + b(t) ≤ 1,

0 ≤ b∗ − σ + λ

σ λ
µ a∗ ≤ 1. (16)

We emphasize that the inequalities (16) are exact and obtained from very general
considerations starting from the master equation. In this sense they intrinsically
account for the spatial and stochastic nature of the underlying reaction–diffusion
system. Upon ignoring any spatial fluctuations and correlations, which amounts
to assuming the factorizations cAB(t) = a(t) b(t) and cB B(t) = b(t)2, after sub-
stitution into Eqs. (14) and (15) one recovers the deterministic mean-field rate
equations (6) and (7) with ρ = ζ = 1. This implies that the site restrictions on a
mean-field level correspond to a finite prey carrying capacity.

3.3. Monte Carlo Simulations of the SLLVM

In this section, we report our results from direct Monte Carlo simulations
in one, two, and three dimensions for the lattice reaction–diffusion (or stochastic
lattice gas) SLLVM introduced in Sec. 3.1.

The SLLVM under consideration is simulated on a simple cubic lattice with
periodic boundary conditions. Each lattice site can be in one of the three possible
states: occupied by a prey, by a predator, or empty. The algorithm that we use for
simulating our model is the following:

• randomly choose a site on the lattice and generate a random number (RN )
uniformly distributed between zero and one to perform the four possible
reactions of our SLLVM (with rates D, µ, λ and σ ), namely either of the
four following processes:

• if RN < 1/4 then randomly select one of the neighboring sites, and with
rate D exchange the contents of the two sites if the neighboring site is
empty;

• if 1/4 ≤ RN < 1/2 and if the site holds a predator, then with rate µ the
site will become empty;

• if 1/2 ≤ RN < 3/4 and if the site holds a predator, choose a neighboring
site at random; if that site holds a prey then with rate λ the neighboring
site becomes a predator;

• if 3/4 ≤ RN < 1 and if the site holds a prey, randomly select a neighboring
site; if that site is empty, then with a rate of σ the neighboring site becomes
a prey.
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One Monte Carlo step (MCS) is completed when the above steps are repeated as
many times as there are number of the sites on the lattice. We have numerically
checked that explicit diffusion does not usually alter the behavior of the system,
even when diffusion is fast compared to the reactions: we have run simulations with
D up to 1000 times bigger than all the other rates, and not observed any qualitative
changes. Specifically, we have verified that the spatial structures such as those
depicted in Figs. 2 and 3 were also obtained for small (or zero), intermediate, and
large (D = 0 . . . 1000) diffusivities. Similarly, the critical properties of the system
(scaling exponents), as discussed in detail hereafter, were found to be independent
of the values of the diffusion rate (at least in the range D = 0 . . . 1000). Hence,
without loss of generality and for the sake of simplicity, in many simulations we
have set D = 0. Note that in this case, the particle offspring production processes
effectively generate diffusive proliferation of the two species.

Typical trajectories in the active phase (in 2D), all starting from random initial
configurations, are depicted in Fig. 1. In qualitative agreement with the mean-field
analysis, the fixed point can either be a node, which in its vicinity is reached
via straight trajectories, or, for larger values of the predation rate λ, a focus that
is approached in spiralling paths. Of course, the agreement with the mean-field
theory is not fully quantitative: in fact, there are fluctuations not accounted for
in the rate equations (6), (7). However, the qualitative agreement (in dimensions
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Fig. 1. (Color online.) Typical trajectories in the predator/prey coexistence phase depicting the phase
portrait for the NN model on a (512 × 512) lattice. All runs start from random initial configuration
with a(0) = b(0) = 0.3 and fixed rates D = 0, σ = 4.0, µ = 0.1, and λ = 0.15, 0.20, 0.40, 1.0, re-
spectively. For high values of λ we observe the typical spirals (the fixed point is a focus) in phase space,
while for small values of λ (typically λ < 0.4) the fixed point is a node.
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Fig. 2. (Color online.) Snapshots of the time evolution (time increases from left to right) of the two-
dimensional SLLVM model in the species coexistence phase, when the fixed point is a focus. The
red, blue, and dark dots respectively represent the prey, predators, and empty lattice sites. The rates
here are D = 0, σ = 4.0, µ = 0.1, and λ = 2.2. The system is initially homogeneous with densities
a(0) = b(0) = 1/3 and the lattice size is 512 × 512.

d > 1) reported here on the structure of the phase portrait as predicted by the
mean-field equations and as obtained for the SLLVM is remarkable, and actually
was not observed in other stochastic predator–prey systems. (17,21) For the various
rates and the related values of the fixed points a∗ and b∗, we can also check that
the inequalities (16) are actually obeyed.

The three pictures on Fig. 2 show three consecutive snapshots of the system
in the predator–prey coexistence phase on a two-dimensional lattice for parameter
values for which the fixed point is a focus. We observe the formation of highly
nontrivial patterns that display strong correlations between the predator and prey
populations. (38) These typical snapshots illustrate how starting from a spatially
homogeneous random initial configuration this simple model may develop amaz-
ingly rich patterns in the steady state where one can clearly distinguish fluctuating
localized spots of predator and prey activity. In this regime we see that in the

Fig. 3. Snapshots of the time evolution (time increases from left to right) of the two-dimensional
SLLVM model in the species coexistence phase, but near the predator extinction threshold, when the
fixed point is a node. The light, gray, and dark dots respectively represent the prey, predators, and
empty sites on the lattice. The same rates, initial condition and system apply as for Fig. 2, except that
now λ = 0.15.
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Fig. 4. (Color online.) Two-dimensional static correlation functions CA,B (x) (left) and C�,�(x) (right,
in linear-logarithmic scale) for σ = 4.0, D = 0, µ = 0.1, and λ = 0.2, 0.5, 1.0, 1.5, 2.1. The system
size is 256 × 256.

early stages of the system’s temporal evolution rings of prey are formed that are
followed by predators in the inner part of the rings (the leftmost picture in Fig. 2).
These rings subsequently grow with time and merge upon encounter. The steady
state is maintained by a dynamical equilibrium of moving fronts of prey (with a
typical length set by the value of the stochastic parameters) followed by predators
that in turn leave behind empty sites that are needed for the next wave of prey to
step in.

To gain further quantitative insight on the complex spatial structure (see
Fig. 2) and on the fluctuations characterizing the system, we have computed numer-
ically the static (and translationally invariant) correlation functions between var-
ious species, defined as Cα,β(x) = 〈nα

j+x nβ

j 〉(∞) − 〈nα
j+x(∞)〉 〈nβ

j (∞)〉, where
α, β ∈ (A, B,�). For the sake of illustration, in Figs. 4, 5 and 6 we report all
the six connected correlation functions of the system, namely CA,B(x), C�,�(x),
CA,A(x), CB,B(x), CA,�, and CB,� measured for various two-dimensional situa-
tions. The static correlation functions were obtained on 256 × 256 lattices where
the data were taken every 200 MCS for a run of total 2 × 109 MCS. When the rates
σ , D, and µ are held fixed, the behaviors displayed by CA,B(x), C�,�(x), CA,A(x),
CB,B(x), CA,�, and CB,� can be qualitatively understood taking into account the
fact that the predation reaction AB → AA occurs more likely when λ is raised (as
a consequence, the predators are more efficient in ‘chasing’ the prey). As shown in
Fig. 4 (left), there is an effective repulsion at short distances (anticorrelations for
small x) and an effective attraction (positive correlations CA,B(x) > 0) at larger
(but finite) distances between predators and prey. This effective ‘attraction’ results
in the ‘bumps’ (rounded peaks) of Fig. 4 for a relative distance of x = 5 − 10
lattice sites. These facts translate pictorially in the complex patterns displayed in
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Fig. 5. (Color online.) Two-dimensional static correlation functions CA,A(x) (left) and CB,B (x) (right)
for σ = 4.0, D = 0, µ = 0.1 and λ = 0.2, 0.5, 1.0, 1.5, 2.1. The system size is 256 × 256.

Fig. 2, where the prey spots are typically at a finite distance from the predators:
they are ‘eaten’ if they come too close.

Figures 5 and 6 show that (anti-)correlations [CA,A(x) > 0, CB,B(x) > 0,
and CA,�(x) < 0, CB,�(x) < 0 at finite distance x] develop, respectively among
predators, among prey, and between predators or prey and empty sites, when λ is
raised: predators (prey) effectively ‘attract’ each other while the predators/prey and
vacancies ‘repel’ each other. In fact, in Fig. 2 we notice ‘clusters’ of predators well
separated from those of empty sites. Figure 4 (right) illustrates that correlations
C�,�(x) among empty sites increases with the value of λ, which results from
the ‘clustering’ among predators and prey occurring in the coexistence phase, as
shown on the rightmost of Fig. 2 (see also Ref. 38).

Figure 7 displays, for a single realization, i.e., without sample averaging),
the typical temporal behavior of the predator density a(t) when the fixed point
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Fig. 6. (Color online.) Two-dimensional static correlation functions CA,�(x) (left) and CB,�(x) (right)
for σ = 4.0, D = 0, µ = 0.1 and λ = 0.2, 0.5, 1.0, 1.5, 2.1. The system size is 256 × 256.
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Fig. 7. (Color online.) The density of the predators a(t) vs. t on two-dimensional lattices (measured
for single realizations) with L = 32, 128 and 512. The values of the stochastic parameters are D = 0,
λ = 1, σ = 4, and µ = 0.1. Initially the particles are homogeneously distributed with densities a(0) =
b(0) = 0.3.

is a focus. After some initial time interval of damped oscillations (see Fig. 8),
as consequence of the spatial fluctuations, the predator density oscillates in a
rather erratic fashion around the average value. It is clear from the graphs that the
amplitude of the oscillations in the steady state decreases with the system size; in
the thermodynamic limit the amplitude of the oscillations vanishes (see Fig. 8).
This remarkable feature was also reported in other stochastic lattice predator–prey
systems. (17,18,21)

For our SLLVM variant, Fig. 8 depicts the transient regime (again, for a
single realization) from a random starting configuration, initially filled with 1/3
of each of the species, toward its steady state. The plots of the densities for both
species exhibit damped oscillations with a period and amplitude that is completely
independent of the initial conditions, in contrast with the predictions from the
standard deterministic Lotka–Volterra rate equations (2), (3). The inset in Fig. 8
shows that the Fourier component |a(ω)| = |∑t eiωt a(t)| vs. 2π/ω displays a
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Fig. 8. (Color online.) The predator and prey densities a(t) and b(t) vs. t , from single runs, on a
4096 × 4096 lattice for D = 0, λ = 1, σ = 4, and µ = 0.1. The inset shows the Fourier transform of
the density of predators with a pronounced peak at around 135 × 5 MCS.

distinct peak at around 135 × 5 MCS (data are taken every 5 MCS) for this set of
values of the stochastic parameters, namely D = 0, λ = 1, σ = 4, and µ = 0.1.

It is important to emphasize the fact that the amplitude of the oscillations de-
creases with increasing the lattice size only ‘globally,’ i.e., if one measures the total
density of the species. In contrast, if one observes the temporal evolution of the
density on a small, fixed subset of the lattice then the amplitude of the oscillations
on this sub-lattice remains approximately the same with increasing the volume of
the system. (21) The erratic oscillations displayed in (finite) predator–prey systems
have found considerable interest in the recent years. For instance, McKane and
Newman(19) have considered a zero-dimensional stochastic predator–prey model
(represented as an ‘urn’), and have shown that the frequency predicted by the
mean-field rate equations naturally appears to be the characteristic frequency of
the damped oscillations of their model and results of a stochastic resonance am-
plification. We have also studied the functional dependence of the characteristic
frequency ωMC of the damped erratic oscillations on the branching rate σ (for
fixed values of λ, D and µ) for a fairly large two-dimensional lattice (but still
displaying some clear erratic behavior, see Fig. 7), and compared the results with
the predicted ωMF arising from the mean-field theory, obtained (with ρ = ζ = 1)

from the imaginary part of Eq. (11): ωMF = |�ε±(a∗
3 , b∗

3)| = µσ

2λ

√
1 − 4λ

σ
(1 − λ

µ
).
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Fig. 9. Functional dependence of the characteristic frequency: comparison of mean-field prediction
ωMF (squares) and Monte Carlo simulations (circles) on a 128 × 128 lattice. The reactions rates are
λ = 1.6, µ = 0.1, D = 0.

The results are shown in Fig. 9. We see that the characteristic frequency ωMC of
the SLLVM is always markedly smaller than the mean-field prediction ωMF (by a
factor 2.5 . . . 3), but the functional dependence on the parameter σ appears to be
in fairly good agreement with the mean-field predictions. Yet we note that for an-
other stochastic predator–prey model variant, Antal and Droz reported completely
different functional dependence for the mean-field and Monte Carlo results. (18)

A completely different picture from that of Fig. 2 emerges when the fixed point
is a node. The three plots in Fig. 3 again depict snapshots (starting with random
initial configuration on the left) of the coexistence phase on a two-dimensional
lattice. (38) In this case no real pattern formation takes place in the steady state;
rather we notice a small number of ‘clouds’ (clusters) of predators effectively
diffusing in a sea of prey (the rightmost picture on Fig. 3). Upon lowering the
value of λ further, the average size of the predator ‘clouds’ and their density
decreases, and the system eventually enters the absorbing phase for sufficiently
small values of λ. One observes here that the dynamics of the small activity clusters
close to the absorbing transition is very simple: (i) an ‘active spot’ can die; (ii)
upon encounter two (or more) ‘activities’ usually coalesce; (iii) an ‘active spot’
can split into two (branching). Thus, as the system displays a continuous phase
transition from a fluctuating active phase into a unique stable absorbing state; as
only short-range interactions are involved; and since the model is not subject to
any special symmetries or conservation laws, the conditions of the so-called DP
conjecture (39) are fulfilled. Therefore, the phase transition occurring in this model
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Fig. 10. Dynamical Monte Carlo simulations to estimate the predator extinction threshold λc for the
two-dimensional (on a 512 × 512 lattice) NN model with D = 0, σ = 4.0, and µ = 0.1. The effective
scaling exponents δ′(t) vs. 1/t (on the left) and θ (t) vs. 1/t (on the right) are shown for four values of
λ: 0.1690, 0.1689, 0.1688, and 0.1687 (from top to bottom).

from an active to the absorbing phase (from the predators’ viewpoint) is a good
candidate for the directed percolation (DP) universality class. (29,40)

For studying the critical properties of the model for the transition from an
active to an absorbing state, we employ as an order parameter the average predator
density a. In the active phase, a(t → ∞) = a∗ assumes a nonzero value, while
in the absorbing state the lattice is full of prey and a∗ = 0. Thus, at the critical
point, the exponent β is defined according to a∗ ∼ (λ − λc)β . (29) The stochastic
fluctuations are responsible for a shift of the critical point and changes in the
critical exponents: for instance (in dimensions 1 < d ≤ 4), the actual computed
value of β is always smaller than the value βMF = 1 predicted by the mean-field
analysis.

In order to check the critical properties of the two-dimensional model close
to the extinction phase transition point, we employ the dynamical Monte Carlo
approach with an initial configuration that has only a single active site (a predator)
in the middle of the lattice, with the remainder filled with prey. (29) As an illustration,
in Fig. 10 we report the dynamical Monte Carlo analysis for a 512 × 512 lattice
with D = 0, σ = 4.0, and µ = 0.1. In this case, the duration of the simulations
was 105 MCS. We chose to measure the survival probability P(t) [the probability
that after time t we still have predators in the system], and the number of active
sites (i.e. predators) N (t). In order to obtain reasonably good estimates for these
two quantities, we performed 3 × 106 independent runs. Close to the critical
point, P(t) and N (t) follow algebraic power laws with critical exponents δ′ and θ ,
respectively:

P(t) ∼ t−δ′
, N (t) ∼ tθ . (17)
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Figure 10 shows the effective exponents δ′(t) and θ (t) defined via

−δ′(t) = ln[P(t)/P(t/3)]

ln 3
,

θ (t) = ln[N (t)/N (t/3)]

ln 3
. (18)

Just below (above) λc the effective exponent graphs are supposed to curve down
(up) for large t while for λ = λc they should be more or less straight lines; their
intercept gives the numerical value of the exponent. From the graphs we estimate
the critical value of λc = 0.1688(1) instead of the mean-field result λc = µ = 0.1;
as to be expected, fluctuations shift the critical point to larger values of the predation
rate (suppress the ‘ordered’ phase). The values for δ′ and θ are very close to 0.451
and 0.230, respectively, which are the known exponents for the two-dimensional
DP model. (29) For the system depicted in Fig. 10, the numerical value of the
critical exponent β is also very close to the established β ≈ 0.584 exponent for
the two-dimensional DP model. We have checked that for other choices of the
rates D, µ, and σ we also obtain critical exponents that are consistent with the DP
universality class.

The Monte Carlo simulations for the three-dimensional model result in values
for the critical exponents that are again very close to the established DP critical
values. For instance, near the critical point, we have measured an exponent β ≈
0.81, in excellent agreement with the corresponding value, βDP ≈ 0.81(1) reported
for DP in d = 3. (29) In three dimensions, we also observe the same two different
scenarios, namely isolated predator clusters near the threshold and expanding and
merging activity fronts at larger predation rates, as in two dimensions, see Figs. 2
and 3. Not surprisingly, we have found that the complex patterns associated with
the active focus fixed point are less correlated in d = 3 compared with d = 2. Also,
for dimensions d > 4 we recover the mean-field critical exponents, consistent with
the fact that the upper critical dimension is dc = 4 for the DP universality class.

Numerical results suggesting that lattice predator-prey models exhibit an
active-absorbing phase transition belonging to the DP universality class have
also been reported recently for other two-dimensional model systems. (17,18,26) In
Sec. 3.4, we provide field-theoretic arguments that support the assertion that the
critical properties near the predator extinction threshold in these models is indeed
generically described by the DP scaling exponents (see also Ref. 30). We have
also performed Monte Carlo simulations for systems where the predation reactions
were subject to a spatial bias, i.e., possible only along a special direction in two
dimensions. While such a bias clearly renders the activity fronts in the active phase
anisotropic, it does not seem to affect the properties near the extinction threshold.
For aside from an overall slow drift along the preferred spatial direction, which
sets up a net particle current, the predators still form isolated islands in a sea of
prey. Hence we expect that one should observe the DP critical exponents even in
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this ‘driven’ system, see Sec. 3.4 below. Similarly, when the predators are made to
actually ‘follow’ the prey, by biasing the hopping probabilities for the A species
towards neighboring sites occupied by B particles, no qualitative changes from the
simple SLLVM are observed. Notice that this variant of the SLLVM differs from
that considered in Refs. 26: whereas there both predators and prey were allowed
to perform ‘smart moves,’ we have allowed only the predators to ‘chase’ the prey
by moving toward the regions where the concentration of prey is locally highest.
These differences might be important as they could perhaps explain that we always
observed damped erratic oscillations, whilst the authors of Refs. 26 reported the
existence (in d = 2) of self-sustained oscillations.

To conclude this section, we briefly consider the one-dimensional case. It
is well-known that site restrictions may become quite crucial in one spatial di-
mension, (36,41,42) one must be prepared to encounter special behavior in this case.
Indeed, since in our version of the SLLVM we are not allowing simultaneous site
occupation by the predators and prey, in contrast with Refs. 17 and 18, the A and B
populations may be forced to segregate into distinct domains on a one-dimensional
lattice (see the similar mechanisms for other multi-species reaction–diffusion sys-
tems reported in Refs. 41 and 42). The results of our computer simulations in
fact show that the steady state of the one-dimensional system is a lattice full of
prey for all values of the stochastic parameters. If we start from a random initial
configuration we observe that the system ‘coarsens’ (as in the one-dimensional
three-species cyclic Lotka–Volterra model, see Ref. 23 and the end of Sec. 1): it
slowly evolves into configurations of repeating sequences of domains of preda-
tors and prey. The spatio-temporal plot of a typical run is shown in Fig. 11. This
multi-domain configuration constitutes a long-lived metastable state in the one-
dimensional system, and typically an enormous crossover time must elapse for
the system to reach the steady state, even in our finite lattices. As time increases,
domains (‘stripes’) of predators merge in a sea of prey (with some sparse holes)
and eventually, in the steady state, the number of these stripes of predators vanishes
for any set of values of the stochastic parameters; the final system is full of prey.

We have indeed found the width of a single predator–hole domain to re-
main constant upon increasing the system size, which is typical of a coarsening
phenomenon, and supports the previous observation that asymptotically, in the
thermodynamic limit, one arrives at a steady state with vanishing predator density.
We might think of the effective long-time coarse-grained dynamics of the predator
and prey domains as being described by the simple coagulation/decay reactions
Ã + Ã → Ã and Ã → ∅. where Ã represents a predator–hole domain, and ∅ in-
dicates a prey domain. As t → ∞, this would suggest that the predator density
should decay as a power law ∼ t−1/2, ultimately turning over to an exponential
cutoff. Owing to the huge crossover times in this system, we were not able to con-
firm this conjecture quantitatively. Yet the same kind of behavior was reported in
Ref. 21 for the one-dimensional version of the cyclic three-state SLLVM. Notice,
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Fig. 11. Space-time plot for the one-dimensional SLLVM (with mutual predator–prey site restrictions),
starting from a random initial configuration with homogeneous density distribution, a(0) = 0.5 = b(0)
(top row; time proceeds downwards). Multi-strip metastable configurations are observed for a long
time while the system slowly evolves toward the absorbing steady state devoid of predators. The system
size here is L = 1024, and for the parameters we chose D = 1, µ = 0.0005, σ = 0.01, and λ = 0.008.
The light gray, dark gray, and black dots respectively represent the prey, predators, and empty sites.

however, that since in the four-state models of Refs. 17 and 18 predator and prey
particles were allowed to occupy the same lattice sites, species segregation did not
occur in the simulations reported there.

3.4. Field-Theoretic Analysis of the Continuous Predator

Extinction Transition

We have seen that our Monte Carlo simulations in two and three dimensions
in many ways confirm the qualitative picture from the mean-field predictions,
once growth-limiting terms are taken into account there. However, the mean-field
approximation naturally cannot capture the intriguing dynamical spatial structures
in the active coexistence phase of the SLLVM. Moreover, it does not aptly describe
the universal scaling properties near the predator extinction threshold. In the
language of nonequilibrium statistical mechanics, and with respect to the predator
population, this constitutes a continuous phase transition from an active phase to
an inactive, absorbing state. For local interactions, and in the absence of additional
conservation laws and quenched disorder, such active to absorbing state phase
transitions are known to be generically described by the universality class of
directed percolation (DP)(39) (for recent reviews, see Refs. 29). Since this is true
even for many-species systems, (30) one would expect the extinction threshold in
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the SLLVM to be governed by the DP exponents as well, as was indeed suggested
in Refs. 16–18. In the preceding Sec. 3.3, we have added further evidence from
our Monte Carlo simulation data that the critical exponents in the SLLVM are
consistent with those of DP.

We now proceed to provide field-theoretic arguments, based on a standard
mapping of the master equation corresponding to the SLLVM processes, i.e., the
spatial extension of Eq. (5). For the sake of clarity, before providing our field-
theoretic analysis of the SLLVM, we briefly outline the general approach (see
Ref. 40 and references therein). The first step towards a field-theoretic treatment
is to recast the master equation (13) into the stochastic (quasi-)Hamiltonian for-
mulation, (36) the site restrictions being implemented into a second quantization
bosonic formalism (to avoid a more cumbersome representation in terms of spin
operators). (43) One then proceeds by adopting a coherent-state path integral rep-
resentation and by taking the continuum limit. This leads to an Euclidean action S
which embodies the statistical weight of each possible configuration and is the cen-
tral ingredient to perform perturbative renormalization group (RG) calculations
(the bilinear part of the action being identified as the Gaussian reference action).
Here, our goal is to show that the action of the SLLVM can be mapped onto a
field theory known to share the same critical properties as the DP. In addition,
the field-theoretic treatment allows us to systematically discriminate between pro-
cesses which are relevant/irrelevant for the critical properties of the SLLVM (in the
RG sense) and thus identify robust features of the stochastic lattice predator-prey
systems.

At this point, we specifically turn to field-theoretic analysis of the SLLVM.
The essence of the following treatment is simply the observation that the prey pop-
ulation is nearly homogeneous and constant near the predator extinction threshold.
The processes involving the prey then effectively decouple, and the SLLVM re-
actions essentially reduce to A → � and A → A + A. Yet this set of processes,
supplemented with either the growth-limiting reaction A + A → A or site restric-
tions for the A particles, is just prototypical for DP. (29) Following the aforemen-
tioned standard procedures, (40) the field theory action for the combined processes
A → � (rate µ), B → B + B (rate σ ), and A + B → A + A (rate λ), along with
particle diffusion, becomes (omitting temporal boundary terms):

S[â, a; b̂, b] =
∫

dd x

∫
dt

[
â(∂t − DA ∇2)a

+ b̂(∂t − DB ∇2)b + µ(â − 1)a

+ σ (1 − b̂)b̂ b e−ρ−1 b̂ b + λ(b̂ − â)â a b

]
. (19)

Since we are interested in the critical properties near the extinction threshold,
where there remains almost no predators in the system, we do not need to take
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into account any spatial restriction imposed on the prey species by the A particles,
and therefore have set ζ → ∞ in Eq. (19). Note that DA and DB here are the
effective diffusivities for the two species that in the site-restricted system emerge
as a consequence of the offspring production on neighboring sites (even if there
is no hopping present in the microscopic model). The fields â (b̂) and a (b)
originate from the coherent-state left and right eigenvalues of the bosonic creation
and annihilation operators in the stochastic (quasi-)Hamiltonian for the predators
(prey). The Trotter formula combined with the discrete hopping processes yields
the diffusion propagators in the action (19), while the reactions are encoded in
the terms proportional to the rates µ, σ , and λ. In each of these terms, the
first contribution indicates the ‘order’ of the reaction (namely, which power of
the particle densities â a and b̂ b enters the rate equations), whereas the second
contribution directly encodes the process under consideration (a and b annihilate
a predator or prey particle, â and b̂ create them).

The exponential in the prey reproduction term captures the site restrictions
within the bosonic field theory(43); the parameter ρ, with dimension of a par-
ticle density, emerges upon taking the continuum limit. In terms of an arbi-
trary momentum scale κ , the scaling dimension of ρ−1 is therefore κ−d , and
it constitutes an irrelevant coupling in the renormalization group sense. How-
ever, since it is essential for the existence of the phase transition, we may
not set ρ−1 = 0 outright, despite the fact that it does scale to zero under re-
peated scale transformations. Rather, we may expand e−ρ−1 b̂ b ≈ 1 − ρ−1 b̂ b,
but need to retain the first-order contribution. The classical field equations
δS/δa = 0 = δS/δb are solved by â = 1 = b̂ (as a consequence of probability
conservation, (40)) whence δS/δâ = 0 = δS/δb̂ then essentially yield the mean-
field equations of motion (12) for ζ−1 = 0, and we may identify ρ−1 with the prey
carrying capacity. Upon shifting the fields â = 1 + ã, b̂ = 1 + b̃, the action then
reads

S[ã, a; b̃, b] =
∫

dd x

∫
dt[ã(∂t − DA ∇2 + µ)a

+ b̃(∂t − DB ∇2 − σ )b − σ b̃2 b

+ σ ρ−1 (1 + b̃)2 b̃ b2 − λ (1 + ã) (ã − b̃) a b]. (20)

For vanishing predation rate λ = 0, the A and B processes of course decouple,
with the predators dying out (with rate µ), whereas the prey population is at its
carrying capacity, b ≈ ρ. We are interested in the properties near the predator
extinction threshold at λc (in mean-field theory, λc = µ/ρ), where also a → 0
and b → bs ≈ ρ. We therefore introduce the fluctuating field c = bs − b, and
demand that 〈c〉 = 0, which eliminates the linear source term ∼bs c̃ in the ensuing
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action. With c̃ = −b̃, we obtain

S[ã, a; c̃, c] =
∫

dd x

∫
dt [ã(∂t − DA ∇2 + µ − λ bs)a

+ c̃[∂t − DB∇2 + (2bs/ρ − 1) σ ]c + σ bs(2bs/ρ − 1) c̃2

− σ ρ−1 b2
s c̃3 − σ (4bs/ρ − 1) c̃2 c − σ ρ−1 (1 + c̃2) c̃ c2

+ 2σ ρ−1 c̃2 (c + bs c̃) c − λ bs[ã2 + (1 + ã) c̃]a

+ λ(1 + ã)(ã + c̃)a c]. (21)

We now exploit the fact that the prey density is hardly fluctuating, as encoded
in the mass term ≈ σ for the c̃ c propagator. Thus upon rescaling φ = √

σ c and
φ̃ = √

σ c̃, and letting σ → ∞ (the scaling dimension of the branching rate σ is
κ2, whence it constitutes a relevant variable that will flow to infinity under the
RG), the nonlinear terms in the prey fields disappear, and the predator and prey
sectors effectively decouple,

S∞[ã, a; φ̃, φ] =
∫

dd x

∫
dt [ã(∂t − DA ∇2 + µ − λ bs)a

− λ bs ã2 a + φ̃ φ + bs φ̃2]. (22)

The fields φ and φ̃ are now readily integrated out; for the predators, however,
we need to implement a growth-limiting term as originally enforced through
the finite supply of prey. This is done most easily through adding the reaction
A + A → A with rate τ . In the field theory action, this leads to the additional
terms τ (â − 1)â a2 = τ ã(1 + ã)a2. Setting DA rA = µ − λ bs , and rescaling the
fields to S = √

λ bs/τ a and S̃ = √
τ/λ bs ã, we finally arrive at

S∞[S̃,S] =
∫

dd x

∫
dt [S̃(∂t + DA (rA − ∇2))S

− uS̃(S̃ − S)S + τ S̃2 S2], (23)

where u = √
τ λ bs . Since the scaling dimensions of both λ and τ are κ2−d , and bs

represents a particle density, the scaling dimension of the new effective nonlinear
coupling u2 is κd−4. Thus the upper critical dimension of the effective field the-
ory (23) for the predator extinction threshold is dc = 4, and the four-point vertex
∝ τ is irrelevant in the RG sense near dc. If we are interested only in asymp-
totic universal properties, we may thus drop this vertex, which leaves us precisely
with Reggeon field theory that describes the critical properties of DP clusters.
(28,29) Notice, however, that the above treatment does not apply to one dimen-
sion, if we consider hard-core particles or site exclusion; as observed in other
reaction–diffusion models as well, (41,42) the one-dimensional topology then
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induces species segregation, and in the system under consideration here, the active
coexistence state disappears entirely.

We remark that the above processes also generate A + B → A, A + B → �,
B → B + B + B etc. on a coarse-grained level. These reactions can be readily
included in the previous analysis, without any qualitative changes in the final
outcome: the continuous active to absorbing state phase transition for the predator
population A is in any case described by the DP critical exponents. We had
previously mentioned another variant, where the predation process is spatially
biased along a given direction. If we mimic such a situation by an additional
vertex of the form −E∇‖S2 (where the spatial derivative ∇‖ is along the drive
direction), which is characteristic of driven diffusive systems, (37) we note that
since its scaling dimension is [E] = κ2−d , it should be irrelevant at the extinction
threshold, and the critical exponents of the phase transition still be described by
DP. (This argument assumes, however, that the drive nonlinearity does not induce
an anisotropy in the spatial ordering; if only the spatial sector transverse to the
drive softens, while the longitudinal fluctuations remain noncritical, novel critical
behavior may ensue.)

4. CONCLUSION

We have studied the effect of spatial constraints and stochastic noise on the
properties of the Lotka–Volterra model, which is a generic two-species predator–
prey system defined on a lattice interacting via a predation reaction that involves
nearest neighbors. We obtain a rich collection of results that differ remarkably from
the predictions of the classical (unrestricted) deterministic Lotka–Volterra model.
This investigation was carried out both analytically, using a suitable mean-field
approach and field-theoretic arguments, as well numerically, employing Monte
Carlo simulations. (In this paper, we have mainly presented figures obtained from
two-dimensional simulations, the most ecologically relevant situation, but we
have also checked our statements running simulations in one, three, and four
dimensions.)

The mean-field analysis of the stochastic lattice Lotka-Volterra model
(SLLVM)(7) predicts that there is a continuous non-equilibrium phase transi-
tion from an active (species coexistence) to an absorbing (full of prey) state and
these predictions are confirmed, in dimensions d > 1, by the computer simula-
tions. Already in other stochastic lattice predator–prey models, it was shown that
the mean-field description provided this type of behavior (see, e.g., Refs. 16,
18, and 26). From an ecological and biological perspective, this means that the
rate equations, when they take into account limited local resources, predict a
possible extinction of one population species (here, the predators), which is a
realistic feature absent from the conventional Lotka–Volterra rate equations. (7)
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Actually, in contrast to the cyclic three-state SLLVM of Ref. 21 and other
stochastic predator-prey models, (17) here the mean-field predictions capture the
essential qualitative features of the SLLVM phase diagram in dimensions d > 1.
Our field-theoretic analysis shows that the mean-field critical exponents are quan-
titatively valid in dimensions d > dc = 4. According to the mean-field analysis
and the Monte Carlo simulations, the stable coexistence fixed points of this model
can be either nodes or foci. It does not exhibit stable and persistent population
oscillations but only damped and transient ones, near a stable focus, whose am-
plitudes vanish in the thermodynamic limit. However, these erratic oscillations
are quite persistent in finite systems and should dominate the dynamics of even
fairly large, but finite populations for many generations, see Figs. 7 and 8. These
features, which appear to be more realistic from an ecological point of view than
the regular (and initial-conditions dependent) oscillations predicted by the con-
ventional Lotka–Volterra equations, have been observed in other stochastic lattice
predator–prey models as well,(16–18,21,31) and likely represent a generic feature of
such systems. This possibly has direct implications as it might shed further light
on issues of particular ecological and biological relevance, such as the emergence
of (quasi-)oscillatory behavior and spontaneous pattern formation as results of
stochastic fluctuations.

Typically, in two and three dimensions, when the fixed point is a focus (at
large values of the predation rate λ), the species coexistence phase is characterized
by the formation of complex and correlated patterns, as the result of the interaction
and the propagation of the traveling wave fronts of predators and prey, which in
turn cause the overall population oscillations. (38) The spatial structure of these
patterns have been studied by computing the correlations functions, whilst their
dynamical properties have been investigated through the computation of the func-
tional dependence of the frequency of the resulting oscillations. We have found
that the typical frequency of the stochastic oscillations are markedly reduced by
fluctuation effects (i.e., compared to the mean-field predictions).

Near their extinction threshold in the coexistence regime, the predators are
largely localized in clusters interspersed in a sea of prey, with an active reaction
zone at their boundaries. (38) We have carefully analyzed the critical properties
of the system by computing various critical exponents and have checked that the
active to absorbing phase transition belongs to the directed percolation (DP) univer-
sality class, with upper critical dimension dc = 4. Field-theoretic arguments sup-
port this conclusion: starting from the master equation, we have constructed a field
theory representation of the involved stochastic processes, which near the preda-
tor extinction threshold can be mapped onto Reggeon field theory. By utilizing
tools of statistical mechanics (mean-field treatment together with field-theoretic
and renormalization group arguments) we thus obtain a general qualitative un-
derstanding of the properties of the system and also a quantitative predictions of
its behavior in the vicinity of the extinction threshold. In particular, the critical
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exponents governing the various statistical properties of the populations densi-
ties near the threshold are argued to be the same as in directed percolation (in
dimensions d > 1). Also, active to absorbing state phase transitions and DP crit-
ical exponents were (numerically) reported in studies of other stochastic lattice
predator–prey model variants. (17,18,25,26,31) Thus, our field-theoretic analysis should
apply to a broader class of stochastic models than the ones considered here.

We have also discussed the one-dimensional case where, due to its special
topology, the site occupation restriction on the lattice implies a ‘caging effect’
resulting in species segregation and very slow coarsening of the predator domains
in the system, which eventually evolves towards a lattice filled with prey.

Finally, we remark that in stark contrast with the deterministic Lotka–Volterra
system, whose mathematical features are well-known to be quite unstable with
respect to any model perturbations, the stochastic spatial version is quite generic,
and its overall features are rather robust against model variations. In particular,
as noted also in Refs. 17 and 21, we have checked that the presence or absence
of explicit particle diffusion does not qualitatively affect the properties of the
system, since in our site-restricted system species proliferation is generated by the
offspring production processes. Similarly, we have found that when the predation
process is spatially biased, near the extinction threshold only non-universal details
change, but the DP critical behavior still applies, and more generally, the overall
picture drawn here remains valid in the active coexistence phase as well. An
intriguing situation is obtained when one considers a stochastic lattice predator-
prey system with a next-nearest-neighbor (NNN) interaction among the competing
species, as well as a short-range exchange process. (31) In this case a subtle interplay
emerges between the NNN interaction and the nearest-neighbor (NN) exchange
or ‘mixing’: When the latter is ‘slow,’ due to the presence of correlations, this
system also undergoes a DP-type phase transition (in dimensions 1 < d ≤ 4),
as does the SLLVM studied in this work. (31) However, when the value of the
mixing rate is raised, the simple short-range exchange processes ‘wash out’ the
correlations and the system undergoes a first-order phase transition as in fact
predicted by mean-field theory. (31) Whereas the rate equations predict entirely
different behavior of the NNN system, which once more reflects the instability
of the classical Lotka–Volterra model, it is quite remarkable that in the absence
of explicit species mixing through particle exchange, the fluctuations render the
properties of the NNN model akin to the simple SLLVM with only nearest-
neighbor interactions. In marked contrast with its mean-field counterpart, the
stochastic lattice Lotka–Volterra model is thus quite stable with respect to model
modifications. On the other hand, as the mean-field regime is expected to be
reached when the exchange process allows the mixing of all the particles (and not
only the immediate nearest neighboring ones) with an infinitely fast rate, (13) the
fact that mean-field like behavior, characterized by a first-order phase transition,
already appears unexpectedly even for finite NN exchange rates (31) is another quite
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intriguing feature of the NNN model. This is even more surprising since we have
checked that fast diffusion affects neither the critical nor the qualitative properties
of the SLLVM studied in this paper.

APPENDIX A.

KOLMOGOROV’S THEOREM AND BENDIXSON–DULAC TEST

In this appendix, we discuss the application of a general theorem due to
Kolmogorov(8) and of the so-called Bendixson–Dulac(11) to the coupled rate equa-
tions (6) and (7).

We start with a theorem by Kolmogorov, who studied the mathematical prop-
erties of two-species (mean-field type) rate equations of predator–prey models of
the following form(3,8):

ȧ(t) = a(t) G(a(t), b(t)), (A.24)

ḃ(t) = b(t) F(a(t), b(t)), (A.25)

Kolmogorov demonstrated that the generic system (A.24), (A.25) is charac-
terized either by a stable fixed point or by a limit cycle, if F and G satisfy the
following conditions (3):

∂ F

∂a
< 0; b

∂ F

∂b
+ a

∂ F

∂a
< 0; (A.26)

b
∂G

∂b
+ a

∂G

∂a
> 0 ; F(0, 0) > 0; (A.27)

∂G

∂a
< 0. (A.28)

In addition, there should exist three positive quantities, ki > 0 (i = 1, 2, 3), such
that F(0, k1) = 0, F(k2, 0) = 0, G(k3, 0) = 0, and k2 > k3.

We now consider the models studied Sec. 2.3 and apply Kolmogorov’s theo-
rem to these systems. In the case considered there, we specifically have:

F(a, b) = σ
(
1 − ζ−1 a − ρ−1 b

) − λ a, (A.29)

G(a, b) = λ b − µ. (A.30)

Thus, condition (A.28) is not fulfilled since ∂G/∂a = 0. This means that
Kolmogorov’s theorem does not apply here (not even in the complete absence
of growth-limiting terms, i.e., for ζ = ρ = ∞) and cannot ensure the existence of
a stable fixed point or a limit cycle.

We now turn to the Bendixson–Dulac method which is a general approach
to test whether a dynamical system of two coupled differential equations admits
periodic orbit solution. This method generally applies to any differential equation
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system ẋ = f (x) of two variables x = (x1, x2), and states that there are no periodic
orbits if div f (x) = ∂x1 f1(x) + ∂x2 f2(x) �= 0 and has only one sign in the whole
space. As a consequence, for a strictly positive function B(x), if div (B(x) f (x)) �=
0 and does not change its sign in the whole space, then ẋ = f (x) admits no
periodic orbit. (32) In addition, if div (B(x) f (x)) = 0, there exists a constant of
motion for the original equation ẋ = f (x). (11,32)

Here, following the lines of Ref. 11 (Chap. 4), we apply the general
Bendixson–Dulac method to Eqs. (6), (7) by rewriting the latter as ȧ = f1 =
a G(a, b) and ḃ = f2 = b F(a, b). We then consider a Dulac (auxiliary) func-
tion B = aα−1b−1 and apply the Bendixson–Dulac test. By computing the di-
vergence of (B f1,B f2) and choosing α = σ/ρλ, one finds div (B(x) f (x)) =
∂a(B f1) + ∂b(B f2) = −µαB. Thus, according to the Bendixson–Dulac criterion
(11,32) the existence of periodic orbits would require div (B(x) f (x)) = 0. Hence,
for Eqs. (6) and (7), periodic orbits are only possible when α = σ/ρλ = 0, i.e.,
for an infinite carrying capacities of prey, ρ = ∞.

In summary, Eqs. (6), (7) with finite (positive) rates µ, σ , and λ, do not admit
periodic orbits, except when ρ = ∞. In this special case, the Bendixson–Dulac
method ensures that there exists a constant of motion. (11)
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e-print:q-bio.PE/0508043.
32. D. W. Jordan and P. Smith, Nonlinear Ordinary Differential Equations. 3rd ed., (Oxford University

Press, Oxford, 1999).
33. J. Riordan, C. R. Doering and D. ben-Avraham, Phys. Rev. Lett. 75:565 (1995).
34. L. Pechenik and H. Levine, Phys. Rev. E 59:3893 (1999).
35. Y. Fujii and M. Wadati, J. Phys. Soc. Jpn 66:3770 (1997); M. Mobilia and P.-A. Bares, Phys. Rev.

E 63:036121 (2001).
36. Nonequilibrium Statistical Mechanics in One Dimension, edited by V. Privman. Cambridge Uni-

versity Press, Cambridge, (1997); F. C. Alcaraz, M. Droz, M. Henkel and V. Rittenberg, Ann. Phys.
(N.Y.) 230:250 (1994); M. Henkel, E. Orlandini and J. Santos, ibid. 259:163 (1997); D. C. Mattis
and M. L. Glasser, Rev. Mod. Phys. 70:979 (1998).

37. B. Schmittmann and R. K. P. Zia, in: Phase Transitions and Critical Phenomena, Vol. 17, edited
by C. Domb and J. L. Lebowitz (Academic Press, New York, 1995).



Phase Transitions and Spatio-Temporal Fluctuations 483

38. Two movies (‘L256.mpg’ and ‘L512.mpg’) corresponding to the situation of Fig. 2 (but with
λ = 2.1 and lattice sizes 256 × 256 and 512 × 512), as well as one movie (‘movie3.mpg’) corre-
sponding to the situation of Fig. 3 (but with λ = 0.18 and lattice size 256 × 256) can be found at
http:// www.phys.vt.edu/∼tauber/PredatorPrey/movies/ .

39. H. K. Janssen, Z. Phys. B 42:151 (1981); P. Grassberger, Z. Phys. B 47:365 (1982).
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